Quiz 6 – revision of redox and galvanic cells.

- 1. Consider the galvanic cell shown on the right.
 - a. What is the theoretical EMF produced by the cell if it is run at standard conditions.
 - b. Write the half equations to each half-cell in the space provided.
 - c. On the diagram label the:
 - i. Direction of electron flow.
 - ii. Direction of positive ions flow from the salt bridge
 - iii. Anode and give its polarity
 - iv. Cathode and give its polarity.
 - d. What will happen to the mass of each electrode as the galvanic cell is allowed to operate. Explain you answer.
 - e. What material should electrode "A" be made from?
- 2. Below are two redox equations. For each equation identify the :
 - atom being reduced (justify your answer using oxidation numbers)
 - atom being oxidised (justify your answer using oxidation numbers)
 - oxidant
 - reductant

$$IO_3^{-}(aq) + 2H_2O_2(aq) + H^+(aq) \rightarrow HOI(aq) + 2O_2(g) + 2H_2O(l)$$

b. $C_2H_6(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$

- 3. Give the oxidation number of underlined atoms in each of the following substances.
 - a. <u>Mn</u>O₄
 - b. H₂O₂
 - c. <u>Mg</u>(OH)₂
 - d. <u>Cr</u>O₄
 - e. <u>C</u>₃H₈O

- 4. Consider the following unbalanced redox reactions. Write balanced half equations for each, states not included, and identify each one as either an oxidation or reduction.
 a. Cr₂O₃ → CrO
 - b. $MnO_4 \rightarrow MnO$
 - c. $H_2O_2 \rightarrow H_2O$
- Using the E^o series shown on the right predict if a spontaneous reaction will occur when:
 - Tin(Sn) metal is placed in a 0.1 M AgNO₃ solution.
 - ii. Pure manganese metal is placed in a solution of 0.2M Al(NO₃)₃
 - iii. Nickel metal is placed in a solution of $Fe(NO_3)_3$.
 - iv. Lithium metal is placed in a 1.0 M solution of Zn(NO₃)₂.
 - v. Iron metal is placed in a 0.10 M HCl solution.
 - vi. Magnesium metal is placed in a 1.0M HCl solution.
- 6. For each spontaneous reaction that occurs in question 5, above, give the
 - i. oxidant and reductant taking part in the reaction
 - ii. Write the balanced half equations, with states
 - iii. Write the balanced overall equation, with states.

Reaction	Standard electrod (E ⁰) in volts at
$F_2(g) + 2e^- \implies 2F^-(aq)$	+2.87
$H_2O_2(aq) + 2H^+(aq) + 2e^- \implies 2H_2O(l)$	+1.77
$Au^+(aq) + e^- \rightleftharpoons Au(s)$	+1.68
$Cl_2(g) + 2e^- \rightleftharpoons 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightleftharpoons 2H_2O(1)$	+1.23
$Br_2(l) + 2e^- \rightleftharpoons 2Br(aq)$	+1.09
$Ag^{+}(aq) + c^{-} \implies Ag(s)$	+0.80
$Fe^{3+}(aq) + e^- \rightleftharpoons Fe^{2+}(aq)$	+0.77
$O_2(g) + 2H^i(aq) + 2e^- \rightleftharpoons H_2O_2(aq)$	+0.68
$I_2(s) + 2e^- \rightleftharpoons 2I^-(aq)$	+0.54
$O_2(g) + 2H_2O(l) + 4e^- \neq 40H^-(aq)$	+0.40
$Cu^{2+}(aq) + 2c^{-} = Cu(s)$	+0.34
$Sn^{4+}(aq) + 2e^- \rightleftharpoons Sn^{2+}(aq)$	+0.15
$S(s) + 2H^+(aq) + 2e^- \rightleftharpoons H_2S(g)$	+0.14
$2H^+(aq) + 2e^- \rightleftharpoons H_2(g)$	0.00
$Pb^{2+}(aq) + 2c^{-} \rightleftharpoons Pb(s)$	-0.13
$Sn^{2+}(aq) + 2e^- \rightleftharpoons Sn(s)$	-0.14
$Ni^{2+}(aq) + 2e^- \rightleftharpoons Ni(s)$	-0.23
$Co^{2+}(aq) + 2c^- \rightleftharpoons Co(s)$	-0.28
$Fe^{2+}(aq) + 2e^- \implies Fe(s)$	-0.44
$Zn^{2+}(aq) + 2e^- \rightleftharpoons Zn(s)$	-0.76
$2H_2O(1) + 2e^- \implies H_2(g) + 2OH^-(aq)$	-0.83
$Mn^{2+}(aq) + 2e^- = Mn(s)$	-1.03
$Al^{3+}(aq) + 3c^{-} \rightleftharpoons Al(s)$	-1.67
$Mg^{2+}(aq) + 2e^- \rightleftharpoons Mg(s)$	-2.34
$Na^+(aq) + e^- \rightleftharpoons Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightleftharpoons Ca(s)$	-2.87
$K^+(aq) + e^- \implies K(s)$	-2.93
Li+(aq) + e− ➡ Li(s)	-3.02